Practical physical chemistry/ (Record no. 33385)

000 -LEADER
fixed length control field 08255nam a22001817a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20180206141222.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 170829b xxu||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9788130920696
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Edition number 22
Classification number 541
Item number VIS
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Viswanathan, B.
245 ## - TITLE STATEMENT
Title Practical physical chemistry/
Statement of responsibility, etc by B. Viswanathan and P. S. Raghavan
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc New Delhi:
Name of publisher, distributor, etc Viva Books,
Date of publication, distribution, etc 2005.
300 ## - PHYSICAL DESCRIPTION
Extent 359 p. ;
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Contents: PART I: DETERMINATION OF MOLECULAR WEIGHT • Experiment 1: Rast’s Method • Experiment 2: Beckmann Method • Experiment 3: Viscosity Measurements • Experiment 4: Steam Distillation • PART II: THERMODYNAMIC PROPERTIES OF SOLUTION • Experiment 5: Solubility of Naphthalene in Benzene • Experiment 6: Partition Coefficient for the Distribution of Iodine between Water and Carbon tetrachloride • Experiment 7: Equilibrium Constant for Homogeneous Equilibria and Determining the Concentration of a given Solution • Experiment 8: Association Factor of Benzoic Acid • Experiment 9: Molecular Formula of Copper-ammonia Complex by the Partition Coefficient Method • PART III: THERMOCHEMICAL EXPERIMENTS • Experiment 10: Heat of Solution of Oxalic Acid front Solubility Measurements • Experiment 11: Heat of Neutralisation of a Strong Acid by a Strong Base • Experiment 12: Vapour Pressure and Enthalpy of Vapourisation of Water • PART IV: PHASE EQUILIBRIA • Experiment 13: Transition Temperature of a Salt Hydrate • Experiment 14: Critical Solution Temperature of Partially Miscible Liquid System • Experiment 15: Effect of Electrolytes on the Critical Solution Temperature • Experiment 16: Temperature-Composition Diagram for Two Component Liquid Azeotropic Systems • Experiment 17: Two Component Simple Eutectic Systems • Experiment 18: Two Component-Compound Forming Systems • Experiment 19: Three Component Liquid Systems: Acetic Acid—Benzene—Water • PART V: CHEMICAL KINETICS • Experiment 20: Acid-Catalysed Hydrolysis of Methyl Acetate • Experiment 21: Alkaline Hydrolysis of Ethylacetate Volumetry • Experiment 22: Alkaline Hydrolysis of Ethylacetate by Conductometry • Experiment 23: Activation Energy for the Acid—Catalysed Hydrolysis of Methylacetate • Experiment 24: Dissociation of Trichloroacetic Acid—Kinetic Method • Experiment 25: Hydrolysis of t-amyl iodide • Experiment 26: Determination of Order for the Peroxide—Iodide Reaction • Experiment 27: Determination of Order for the Persuiphate—lodide Reaction • Experiment 28: Kinetics of lodination of Acetone by Spectrophotometry • Experiment 29: Evaluation of First Order Rate Constant Potentiometry • Experiment 30: Kinetics of a Polymerization Reaction • Experiment 31: Kinetics of Catalytic Decomposition of Hydrogen Peroxide • Experiment 32: Thermal Decomposition of Potassium Chlorate • Experiment 33: Effect of Surface Area of Catalyst and Temperature on the Kinetics of Metal-Acid Reaction • Experiment 34: Catalytic Constant of an Acid • Experiment 35: Mechanism of the Oxidation of an Organic Compound from Kinetic Data • Experiment 36: Rate Constant for the Decomposition of Hydrogen Peroxide Over Platinum • Experiment 37: Polymerisation of methylmethacrylate Experiment 38: Light Intensity (in Einstein/minute) Emitted by a Source—Actinometry • Experiment 39: Inversion of Sucrose—Polarimetry • Experiment 40: Decomposition of Diacetone Alcohol Using Dilatometer • Experiment 41: Rate of Decomposition of Ammonium Nitrite (or Benzene Diazonium Chloride) • Experiment 42: Evaluation of Rate Constant by Guggenheim Method • Experiment 43: Effect of Ionic Strength on the Rate of Persulphate — Iodide Reaction • Experiment 44: Kinetics of Oxidation of Alcohol by Potassium Dichromate—Spectrophotometry • PART VI: SURFACE CHEMISTRY • Experiment 45: Adsorption Characteristics of Acetic Acid on Charcoal • Experiment 46: Surface Tension of a Liquid Using Stalagmometer • Experiment 47: Critical Micelle Concentration from Surface Tension Measurements • PART VII: PHOTOMETRY • Experiment 48: Verification of Beer and Lamberfs Law • Experiment 49: Jobts Continuous Variation Method • Experiment 50: Simultaneous Estimation of Manganese and Chromium in a Solution of Dichromate and Permanganate Mixture • Experiment 51: Spectrophotometric Determination of Critical Micelie Concentration • PART VIII: CONDUCTOMETRY • Experiment 52: Determination of Cell Constant • Experiment 53: Verification of Onsager’s Equation and Determination of Equivalent Conductance at Infinite Dilution of Strong Electrolytes • Experiment 54: Verification of Ostwalds Dilution Law and Determination of Dissociation Constant of Weak Acids • Experiment 55: Verification of Walden’s Rule • Experiment 56: Conductometric Determination of Critical Micelle Concentration • Experiment 57: Titration of a Strong Acid with a Strong Base • Experiment 58: Titration of a Weak cid with a Strong Base • Experiment 59: Titration of a Mixture of Strong and Weak Acid with a Strong Base • Experiment 60: Precipitation Titration and Determination of Solubility of a Sparingly Soluble Salt • PART IX: POTENTIOMETRY • Experiment 61: Transport Numbers of Silver and Nitrate Ions by l-Iittorf’s Method • Experiment 62: Standard Electrode Potential of Cu and Ag Electrodes and Determination of the Potential Difference in a Concentration Cell • Experiment 63: Thermodynamic Parameters of a Reaction from EMF Measurement • Experiment 64: Formal Potential of a Redox Couple • Experiment 65: p1-I of a Buffer Solution • Experiment 66: Solubility Product and the Instability Constant • Experiment 67: Activity of Hydrogen Ions Using the Hydrogen Electrode • Experiment 68: Hydrolysis Constant and the Degree of Hydrolysis • Experiment 69: Titration of a Strong/Weak Acid With a Strong Base • Experiment 70: Titration of a Strong and Weak Acid Mixture with a Strong Base • Experiment 71: Dissociation of a Weak Acid by Potentiornetric Titration • Experiment 72: Redox Titration • Experiment 73: Composition of Zinc Ferrocyanide Complex by Potentiometric Titration • Experiment 74: Precipitation Titration of a Mixture of Chloride and Iodide Ions with Silver Nitrate • PART X: ELECTRODE PROCESSES • Experiment 75: Percentage Purity of Copper Sulphate—Electrogravimetry • Experiment 76: Decomposition Potential • Experiment 77: Polarisation Phenomenon • PART XI: VOLTAMETRY • Experiment 78: Reversibility of an Electrochemical Reaction and Determination of Concentration of a given Reducible lon—Polarography • Experiment 79: Formula and the Stability Constant of a Complex by Polarography • Experiment 80: Reversibility of a Redox Process and Determination of the Concentration of a given Solution—Cyclic Voltametry • PART XII: MISCELLANEOUS EXPERIMENTS • Experiment 81: Magnetic Susceptibility by Guoy Balance • Experiment 82: Transition Temperature and Heat of Transition by Differential Thermal Analysis • Experiment 83: Polymorphic Transformation of Solids—Dilatometry • Experiment 84: Electrochemical Nature of Corrosion and its Control • Experiment 85: Current—Voltage Characteristics of a p-n Junction Rectifier • Experiment 86: Dielectric Behaviour of Ceramics by Pse Transion • Experiment 87: Partial Molar Volume of Ethanol—Water Mixture • Experiment 88: Velocity of Sound in Liquids—Ultrasonic Interferometry • Experiment 89: Determination of Very Low Concentration of Metals in Solution by Flame Photometry • Experiment 90: Specific and Molar Refraction of a Liquid by Refractometry • Experiment 91: Dipole Moment ofhiquid • Experiment 92: Estimation of Avogadro Number • Experiment 93: Crystal Structure Determination—X-ray Diffractogram • Experiment 94: Surface Area Determination • Experiment 95: Excited State Propeperties of Molecules • Experiment 96: UV—Visible Spectroscopy • Experiment 97: Infrared Spectroscopy • Experiment 98: Electron Spin Resonance Spectroscopy • Experiment 99: Nuclear Magnetic Resonance Spectroscopy • Experiment 100: Molecular Modeling
650 ## - SUBJECT ADDED ENTRY--TOPICAL TERM
Source of heading or term Physical Chemistry
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Raghavan, P S
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Item type [IBDP]
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Materials specified (bound volume or other part) Damaged status Not for loan Collection code Permanent location Current location Shelving location Date acquired Source of acquisition Cost, normal purchase price Full call number Barcode Date last seen Price effective from Koha item type
      PB     IB DIPLOMA Christ Junior College - IB Christ Junior College - IB ->Chemistry 2017-08-29 Viva Books Private Limited:SIVB-10-17-00325;29/08/2017 395.00 541 VIS 22000288 2024-03-21 2017-08-29 [IBDP]